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ABSTRACT

The National Aeronautics and Space Administration in the United States and the

Defense Research Agency in the United Kingdom have ongoing experimental research

programs in rotary-flow aerodynamics. A cooperative effort between the two agencies is

currently underway to collect an extensive database for the development of high angle of

attack computational methods to predict the effect of Reynolds number on the forebody

flowfield at dynamic conditions, as well as to study the use of low Reynolds number data

for the evaluation of high Reynolds number characteristics. Rotary balance experiments,

including force and moment and surface pressure measurements, were conducted on

circular and rectangular aftbodies with hemispherical and ogive noses at the Bedford and

Farnborough wind tunnel facilities in the United Kingdom. The bodies were tested at 60 °

and 90 ° angle of attack for a wide range of Reynolds numbers in order to observe the

effects of laminar, transitional, and turbulent flow separation on the forebody

characteristics when rolling about the velocity vector.





NOMENCLATURE

Symbols

The units for physical quantifies used herein are presented in U.S. Customary

Units with S.I. Units given in parentheses. All aerodynamic data are referenced to the

body system of axes.
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flb/2V
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0

reference area, x rb2, ft2 (m 2)

reference body length, ft (m) _-"

reference base diameter, ft (m)

side-force coefficient, Side force/q.. Arcf

body-axis yawing-moment coefficient, Yawing moment/q,. Arcf D

pressure coefficient, (p-p..)/q..

pressure on model surface, lb/ft 2 (N/m 2)

free-stream static pressure, lb/ft 2 (N/m 2)

free-stream dynamic pressure, lb/ft 2 (N/m 2)

radius at the base of the body, ft (m)

Reynolds number, based on body diameter, VD/v

free-stream velocity, ft/sec (m/see)

axial distance from the nose tip, ft (m)

angle of attack, deg

angular velocity about spin axis, rad/sec

spin coefficient, positive for clockwise spin

kinematic viscosity, ft2/s (m2/s)

azimuth angle around forebody cross-section, deg
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INTRODUCTION

Recent tactical evaluations demonstrating the enhanced high angle of attack

performance and nose-pointing agility with a number of U.S. and Russian military

configurations have shown the utility of post-stall, velocity vector maneuvering. The

relative interest in this technology has been stimulated by the introduction of these highly

agile military aircraft which possess a substantially expanded flight envelope compared to

previous aircraft. These advanced aircraft maneuver at high angles of attack, performing

rapid, large-amplitude motions which are characterized by rotary, non-linear, and

unsteady flows. Hence, an increased knowledge of aerodynamic characteristics at high

angles of attack under dynamic conditions is now necessary for the successful design

optimization of future fighter aircraft and has put a new emphasis on the use of rotary

balance data in the analysis of these flight regimes.t'4

The quantification of the aerodynamic characteristics obtained at high angles of

attack under dynamic conditions takes on increasing importance as emerging aircraft will

continue to exploit this flight regime. This extends beyond a configuration's

developmental evaluation of the damping terms to the incorporation of these terms in

large-angle motion simulations. Accurate simulation representation permits the

optimization of high angle of attack flight control laws as well as the exploration of a

configuration's flight characteristics in a benign simulation environment. In addition to

obtaining the aerodynamic force and moment coefficients for these dynamic motions,

new vortex control applications also require familiarity with the flow in the form of flow

visualization experiments and pressure measurements 5' 6 in order to fully understand and

utilize the flow fields that develop under these conditions.

The flow about forebody geometries typical of most military aircraft at high

angles of attack is highly complex. The results of previous research on fuselage-type

forebodies at static test conditions showed that throughout much of the angle of attack
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range, the flow is governed by separation-induced vortex flows. Studies of ogive-cylinder

bodies have shown that at low angles of attack (a<8o), as long as the flow remains

attached, no vortices develop on the body. At moderate angles, (a<25 o) an adverse

cross flow pressure gradient on the downwind side of the body causes the boundary layer

to separate and roll up to form two symmetric vortices. The separation lines move toward

the upwind side of the body with increasing angle of attack until the vortices completely

dominate the flow over the leeward side. From between 25 ° to 40 o, (depending on the
a...

configuration), the steady, symmetric vortices begin shedding asymmetrically and

randomly. As the angle approaches 90 ° there is a transition to an unsteady wake-type

flow resembling Karman vortex streets. 7.s These vortex "streets" are characteristic of the

regular pattern of counter-rotating vortices that occur on 2-D cylinders normal to the

flow.

The research conducted to date has shown that in static conditions the forebody

flow characteristics are influenced by factors such as forebody cross section, nose

geometry and local Reynolds number. However, basic configurational data relating the

effects of these physical characteristics during a velocity vector roll rate has been lacking.

Both the National Aeronautics and Space Administration (NASA) in the United

States and the Defense Research Agency (DRA) in the United Kingdom have on-going

experimental research programs in rotary-flow aerodynamics. A five-year cooperative

effort is currently underway to further studies on this subject.

The objectives of this collaboration between NASA and DRA are as follows:

* To explore and develop computational fluid dynamics (CFD) methods for

predicting Reynolds number effects on aircraft fuselage spin-damping

characteristics.



• To conduct systematic wind-tunnel, rotary balance experiments and CFD

calculations on a series of simple, generic bodies.

• To compare experimental and calculated results to assess/calibrate CFD

methods.

This report describes the experiments conducted and an analysis of these data,

presenting aerodynamic data and surface pressures for these generic bodies at high angle

of attack as a function of Reynolds number and rotation from the first two wind-tunnel

test entries.

EXPERIMENTAL SETUP

Test Facilities

Wind tunnel tests were conducted in the low-speed atmospheric wind tunnel (13 ft

x 9 ft) at Bedford and in the high speed pressurized tunnel (8 ft x 6 ft) at Famborough,

utilizing the Defense Research Agency rotary balance apparatus. The Bedford and

Farnborough facilities provided a Mach number range of 0.024 to 0.21 and a Reynolds

number capability of 0.15 to 4.5 million per foot for these tests. Pressures of 0.5 to 3

atmospheres were achieved in the variable-pressure facility. A diagram of the rotary

balance apparatus in the low-speed tunnel at Bedford is shown in Figure 1. A five-

component strain gauge balance (axial force excluded) was attached to the end of the

sting, which was then attached to the sting carrier. The carrier traversed along the

machined steel rotor to vary angle of attack in one degree increments. The angle of attack

could be varied between -12 o and 90o with various sting carriers. When the angle of

attack was set, the carrier was secured to the rotor with clamping bolts normal to the

plane of the rotor and screwed wedges in the plane of the rotor. Weight carriers were

bolted to the ends of the rotor, and a selection of weights were fixed to either carrier to
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maintain static balance. A covered channel in the rotor accommodated the cable from the

strain gauge balance and pressure transducers. Rotational speed, usually limited to 350

rpm, was controlled by a servo valve with feedback from a tachogenerator geared to the

drive shaft. When testing at high air speeds and/or high air density, rotation speed was

limited by damping loads on the rotating assembly which reach the limit of torque

available from the hydraulic motor. Strain gauge balance and pressure measurement

signals were brought out by a cable through a bore hole in the drive shaft and a slipring

•unit at the motor end of the shaft.

Models

The model shapes selected for these tests were circular and rectangular aftbodies,

with detachable hemispherical and 2.0D ogive forebodies. A photograph of the

rectangular ogive model installed on the rotary balance apparatus in the low-speed tunnel

is shown in Figure 2. The models were tapped with six circumferential rows of taps on

the forebody and two on the aftbody, as shown in Figure 3. All models were 36 inches

long, with a diameter of 6 inches. Station zero represented the tip of the forebody, station

12 the forebody breaking point, and station 36 the overall length. Taps were located at

stations 1, 2, 4, 6, 8, 11, 29, and 32.5. The total number of surface pressure ports was 254

for each configuration. There were 32 pressure taps at each body station except station 1,

which only accommodated 30 taps. Trip strips and strakes were tested on the circular

ogive configuration at 60 degrees angle of attack. A sketch of these devices is shown in

Figure 4. The trip strips were narrow thin pieces of metal with small, raised holes

punched in them. One strip was attached on each side of the nose of the circular ogive

model, 80 degrees from the bottom centerline, and extended down the sides until about 3

inches from the aft end. The strakes were thin pieces of metal mounted perpendicular to



themodelsurfaceoneither sideof thenose,approximately0.5 incheswide by 4 inches

longandplaced135° from thebottomcenterline.

Test Conditions

The tests were conducted over a range of Reynolds numbers (based on diameter)

from about 0.08 to 2.25 million, a Mach number range of 0.024 to 0.21, and at angles of

attack of 60 and 90 degrees. The rotation rate varied from 0.0 to 0.4 f_b/2V in both

positive (clockwise) and negative (counter-clockwise) directions. Pressure data were

taken concurrently with force and moment data during each run. Due to data acquisition

problems, surface pressures were not obtained on the aft end of some of the

configurations tested at the Bedford facility. A summary of the configurations tested and

test conditions is presented in Table 1.

Data Processing/Reduction/Accuracy

When the model is rotated at constant speed, each channel of the strain gauge

balance measures components due to gravity, inertia, and aerodynamics. The component

due to gravitational force is a cyclic, equal and opposite variation about zero, whereas the

inertial force is a function of model mass distribution and proportional to the square of

the rotational speed. The aerodynamic damping force is proportional to wind speed and

air density, as well as rotational speed. The gravity component is eliminated from both

wind-on and wind-off data by integrating and averaging the signal. The inertial

component is assumed to be constant with wind on and wind off, so the aerodynamic

component is the difference between wind-on and wind-off measurements at the same

rotational speed, provided wind-off measurements axe made in a vacuum. However, if

wind-off tests are made at atmospheric pressure, as is usually the case, the wind-off

damping is also subtracted from the wind-on measurement. To reduce the wind-off
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measurement to the inertial component alone, it is necessary to average the forces and

moments produced by rotating the model in both directions. This mean is then subtracted

from the wind-on reading at the same rotational speed to yield the total aerodynamic

damping.

To measure the pressures, a 780B Pressure Measurement System from Pressure

Systems, Inc. (PSI) was used, along with eight electronic scanning pressure modules

(ESP-32) containing 32 ports each for a total of 256 ports. The modules used for the low-

speed tests at Bedford were rated at a maximum range of 52.5 psi while those for the high

speed tests at Famborough were :kS.0 psi. The plastic tubes from each port on the model

surface were connected to one side of the differential pressure transducers mounted inside

the model. The transducers converted the pressures to voltages. The voltage level for each

of the ports was sent through the rig sliprings to the Data Acquisition and Control Unit in

the tunnel control room. The voltages for all ports were then passed to the tunnel

computer for conversion to pressures and coefficients and storage.

The number of pressure readings averaged at each rotation rate to arrive at a final

value for each port was determined by the available system memory and from experience

gained in previous rotary balance pressure and force tests. Forty readings were taken at

each port over a 4 second time interval. These readings were then averaged to determine

the final pressure value.

The error specification of the PSI 780B System was _+0.10% of full scale in a

worst case. Drift in the system was the largest single cause of error in these tests,

primarily due to temperature variations in the tunnel that affected the transducers. Re-

zeroing the system at the start of each rotational sweep kept drift errors to a minimum.

System zero checks indicated a worst case drift error of_+0.08%. Repeat runs have shown

additional accuracy errors within _+0.04%. The combination of these errors produced an
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overall system accuracy for these tests of within _+0.12% of the full-scale value of the

transducers.

Much of the data collected at the low-speed facility in Bedford was corrupted due

to problems with the test equipment. The sliprings became contaminated and interfered

with the signals from the pressure modules, adversely affecting the pressure data. In fact,

aftbody pressure data were only obtained for the rectangular hemisphere at 90 ° because

the number 7 and 8 modules (containing the aftbody ports) were disconnected for the

remainder of the testing, due to the slipring contamination. Due to the problems

encountered at the low-speed facility at Bedford, some supplemental force and moment

testing was conducted in the Langley 20-Foot Vertical Wind Tunnel in order to obtain

some low Reynolds number data.

Presentation of Data

The force and moment data is typically presented as a function of non-

dimensionalized rotation rate, _b/2V, for Reynolds numbers based on body diameter

ranging from approximately 80,000 to 2,200,000. As referred to in the discussion,

damped in yaw is defined as a body-axis yawing moment that opposes the wind axis

rotation, or a negative slope of yaw versus rotation. Conversely, a positive slope is

indicative of propelling yawing moments. Figure 5 illustrates the damped and propelling

quadrants for rotational yawing moments. While a negative slope of side force is not

necessarily an indication of damped yawing moments, this report will refer to side force

as being damped when the slope is negative and propelling when the slope is positive.

Software tools to visualize experimental data in an expeditious fashion have been

developed and were used in the analysis of the pressure data obtained at the Bedford and

Famborough facilities. The surface pressures were assigned color values and mapped
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onto a three-dimensional surface model of the configuration. Since the model could be

positioned at any attitude, the flow effects could be examined over the entire

configuration. The software also has the capability to display pressure increments

between two flow conditions and to highlight a desired range of pressure coefficients. In

this manner, flow effects due to rotation rate, angle of attack, or Reynolds number were

easily observed. This capability not only provided initial on-site analysis, but also

permitted early identification of equipment problems that would not have been

•identifiable in the test environment otherwise. Another example of the software capability

is shown in Figures 6 and 7. Figure 6 illustrates the tap locations by displaying the

pressure data mapped onto a surface model of the rectangular ogive. In order to view the

data in its entirety, the surface shading can be turned off, as shown in Figure 7. The data

presented in this report will be displayed in this manner so that more of the flowfield can

be viewed at once.

O_]G!_!,_,._PAGE I_
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RESULTS AND DISCUSSION

Of the two model forebody plan shapes tested (hemispherical and ogive), the

ogive configurations were the most representative of typical aircraft. Consequently, this

report will focus on the effects of Reynolds number on the flowfields about the

rectangular and circular cross section ogives and attempt to gain further insight into the

observed behavior of the measured static and rotational yawing moment characteristics

using the visualization of the surface pressure data.

Although past forebody studies have made assumptions about stability

characteristics based on side force behavior, the NASA/DRA data showed that side

forces, both statically and at rotation rate, are not necessarily indicative of the yawing

moment behavior. The significance of the yaw characteristics at high angles of attack,

particularly the slope of yawing moment curve versus rotation, is of critical importance in

determining a configuration's behavior at these angles. Propelling yawing moments

versus rotation are indicative of possible departure susceptibility and spin behavior, and

in configuration terms is considered adverse. Conversely, damped yawing moments are

desirable from both a spin as well as a controlled maneuver standpoint. While previous

research efforts have assumed that yaw behavior parallels that seen in side force and have

frequently presented only these data, these tests indicated that this was not the case. The

assumption that yawing moment has the same characteristics as side force 9 is

unsatisfactory for static test conditions and can lead to completely erroneous conclusions

when evaluating rotational behavior. This is shown graphically in the comparison of

aerodynamic characteristics for the rectangular ogive at both 60 ° and 90 ° angle of attack,

presented in Figure 8. The rotational yawing moment curves for the rectangular ogive

configuration at these two angles of attack exhibited very similar slopes (Figure 8a),

while the slopes of the rotational side force curves for the two angles of attack were

opposite (Figure 8b). As a result of the numerous differences between yawing moment
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and side force trends,as well as the fact that side force variation (included here for

completeness) has a relatively insignificant contribution to aircraft behavior at high

angles of attack, the following discussion will focus primarily on the variation of yawing

moment with rotation rate.

Rectangular Ogive - 60 ° Angle of Attack

Figure 9 shows the Reynolds-number sensitivity of the rotational side force and

yawing-moment characteristics for the rectangular ogive at 60 ° angle of attack.

Corresponding surface pressure plots are presented in Figures 10 through 13.

As seen in Figure 9, increasing Reynolds number had little effect on the yawing

moment characteristics at rotation. Even as ReD increased from laminar flow conditions,

through transitional to fully turbulent ReD, the basie behavior in yaw remained the same:

a highly damped configuration with little asymmetric yaw at static conditions. The

pressure data presented in Figure 10 further illustrates the relative insensitivity to

Reynolds number this configuration exhibits. At static conditions, the flow was

characterized by attached flow along the four comers of the forebody. The formation of

relatively symmetric forebody vortex structures is evidenced by the symmetry of the

suction peaks on the bodies' upper surface. The basic surface pressure features remained

relatively unchanged as Reynolds number increased to the maximum tested. The most

prominent difference being a slight increase in the peak suction values at the nose as

Reynolds number was increased.

The imposition of a wind axis rate on the forebo_ly, as shown in Figures 11 and 12

for -.1 and +.1 f_b/2V respectively, resulted in a rotation of the surface pressure

distribution commensurate with the movement of the local velocity vector. The net result

was a reduction in the local suction on the lower windward and upper leeward comers,
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and an increase in suction on the remaining comers. The increased crossflow on the

advancing upper comer resulted in a more pronounced vortex effect on the upper surface.

The mechanism responsible for the yaw damping characteristics was also evident, and are

more clearly shown for the rotation sweep depicted in Figure 13 at a Reynolds number of

2,090,000. As rotation rate increased, the rotation of the relative velocity vector produced

an increase in pressure on the advancing face of the forebody, with the leeward side

surface pressure remaining essentially unchanged from the static case. The net difference

in the surface pressure on either side yielded the increase in damped yawing moment as

rotation rate increased. As with the static case, the basic surface pressure features were

essentially unchanged as Reynolds number increased, although the distinction between

the separation of the upper comer vortex sheet and its re-impingement on the upper

surface was more distinct for the highest Reynolds number case. Because these

differences lie primarily in the longitudinal plane, their effect on the directional

characteristics are minimal. The upper surface differences contributed to a static shift in

the rotational pitching moment data as shown in Figure 14. The general rotational

behavior remained similar, however.

For this configuration, increasing Reynolds number generally made the flowfield

features more distinct, yet the basic structures, including the low pressure regions and

separation lines, were relatively unaffected by Reynolds number. This apparently is a

result of the fact that the key surface pressure features are defined by the comers of the

rectangular body.

Circular Ogive - 60 ° Angle of Attack

The effects of rotation on the aerodynamic characteristics for the circular ogive at

60 ° angle of attack are presented in Figure 15 for selected Reynolds numbers. Pressure

distributions at static and dynamic conditions are presented in Figures 16 through 20.
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The force and moment data collected during these tests, in correlation with the

pressure data, show that the separated vortex flow had a significant influence on the

circular ogive at 60 ° angle of attack. Past experimental as well as empirical experience

with circular forebody configurations have shown a considerable sensitivity of this shape

to both geometric and flowfield variations that persist up to full scale flight Reynolds

9-12
numbers.

As expected, the rotational yawing moment and side force characteristics of the

circular ogive at 60 ° angle of attack exhibited significant effects due to Reynolds number.

At low Reynolds number, yawing moments remained well damped at all rotation rates, as

shown in Figure 15a. However, an increase in Reynolds number resulted in significant

changes to the rotational yawing moment (and side force) characteristics. Yaw damping

was reduced in the transitional Reynolds number range, resulting in neutral to slightly

propelling characteristics, and further increases in Reynolds number yielded very non-

linear results. The rotational yawing moment characteristics were significantly different

between Reynolds numbers of one and two million. As shown in Figure 15a, yawing

moments were propelling at a Re D of 1,400,000, but then became damped again at low

rotation rates at a Re o of 2,080,000. This behavior would indicate that either the flowfield

was highly unstable at these high Reynolds numbers, or that Reynolds number dependent

flowfield changes were still occurring as ReD was increased through this region. It is

worth noting, however, that at low rotation rates the very low Reynolds number test data

did provide a better representation of the highest Reynolds number moment

characteristics.

Distinct flow patterns were also observed for different ranges of Reynolds

numbers. For Re D less than 200,000, the vortex cores remained close to the forebody

surface. Consequently, above the suction peaks associated with the attached cross-flow on
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the forebody sides, a strong secondary suction peak was exhibited on the upper body, as

shown in Figure 16a for a Reynolds number of 89,000 under static conditions. As

mentioned previously, the very low Reynolds number data obtained from Bedford was

subject to equipment sensitivity as well as slipring problems that introduced errors on

individual ports. The basic flow structure is still evident, however. As Reynolds numbers

increased into the transitional range between 200,000 and 500,000, the vortex flow

became highly asymmetric as the individual vortices began detaching from the surface

independently. This asymmetric separation is illustrated in Figure 16b, at a Reynolds

number of 350,000 and zero rotation. The separation lines along the upper portion of the

forebody indicated that the right-side vortex detached from the surface ahead of the left-

side vortex. Note that the flow exhibited greater attachment along the entire left side of

the body (Figure 18a). This increased attachment on the left-hand side of the body was

especially evident on the aftbody. The flow asymmetry on the aftbody was apparently

responsible for the positive yaw offset that occurred at this Reynolds number (Figure

15a). As the Reynolds number increased above 500,000 the vortex flow became more

symmetric, with both vortices lifting away from the body at the apex of the ogive. The

pressure data in Figure 16c shows that at a Reynolds number of 703,000 the vortices had

almost completely detached from the forebody surface. At a Reynolds number of

1,080,000 the vortices remained fully detached, but as Reynolds number increased

further, they appeared to move progressively closer to the surface again, as evidenced by

the more pronounced upper surface suction peaks shown in Figures 16d and 16e for

Reynolds numbers of 1,400,000 and 2,080,000, respectively.

Figure 17 shows the re-orientation of the vortex structure on the forebody, with

the suction peaks highlighted, induced by a rotation rate of -0.2 _b/2V at low Reynolds

number. The vortex structure migrated around towards the right side of the forebody due

to rotation, and the increase in the downwind suction as well as realignment of the lower
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surfacepositive pressure was responsible for the high level of yaw damping exhibited

under these conditions. For transitional Reynolds numbers, where yaw damping was

reduced, there was much less variation in the forebody flowfield due to rotation (see

Figure 18 for a Reynolds number of 350,000). The relative change in the aftbody flow

characteristics was perhaps more influential at this Reynolds number. As shown in the

moment data, significant changes in the rotational characteristics occurred as Reynolds

number increased from one to two million. Figure 19a presents a comparison of the

•flowfield for Reynolds numbers of 1,400,000 and 2,080,000 and rotation rates of -0.1 and

-0.2 Db/2V. For both Reynolds number conditions, the pressure field was rotated due to

the orientation of the velocity vector at rotation, with the positive pressure region on the

lower surface rotated toward the relative wind and the upper surface vorticies rotated

away from the relative wind. While initial inspection of the pressure data indicated the

flowfields were similar, the force and moment data revealed distinct differences at a

rotation rate of -0.1 Db/2V. At this rotation rate, yaw was damped at the higher Reynolds

number and propelling at the slightly lower Reynolds number (Figure 15a). As a result,

closer examination of these flowfields was performed by subtracting the pressure

coefficients for Reo=l,400,O00 from those obtained at RED=2,080,000, displaying the

effect of Reynolds number on the forebody pressures (Figure 19a). The differences in the

moment characteristics became evident in the incremental data, where the RED=2,080,000

configuration exhibited more downwind suction and less upwind suction than the

ReD=l,400,000 configuration, both concurrent with the differences observed in the yaw

damping. Closer inspection of the attachment lines and separation lines revealed subtle

differences in the two Reynolds number conditions. It should be noted that the two

Reynolds numbers were tested consecutively, following an increase in tunnel

pressurization (the model was not handled between these two runs). When the rotation

rate was increased to -0.2 flb/2V, the moment data showed very similar results for both

Reynolds numbers. Correspondingly, the pressure data were also similar, as shown by
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both the complete and incremental surface pressure plots in Figure 19b. The full effect of

rotation on the pressure distribution for the highest Reynolds number tested is shown in

Figure 20.

Despite the different pressure distributions about the circular ogive at 60 ° angle of

attack for laminar and fully turbulent separation, the resulting rotational yawing moment

characteristics at low rotation rates were found to be very similar. The flow separation

states influencing ogive aerodynamics (i.e. laminar, transitional and turbulent boundary

layer separation) were also responsible for the variation in rotational behavior. The

transitional Reynolds number effects, wherein the boundary layer states varied from the
b

left to the right side of the body, were further exacerbated with the imposition of rotary

flow. These effects apparently occur at high Reynolds numbers when the local Reynolds

number on a tapered body such as an ogive is still within the transitional range. The

relative instability of the flowfield at transitional flow conditions was also observed

during repeat runs of equivalent test conditions. In general, the repeatability of the test

data at transitional Reynolds numbers was not as good as the repeatability at fully laminar

or fully turbulent flow conditions.

Rectangular Ogive - 90 ° Angle of Attack

The effects of Reynolds number on the rotational yawing moment and side force

characteristics for the rectangular ogive at 90 ° angle of attack are shown in Figure 21.

Corresponding surface pressure plots are presented in Figures 22 through 28.

At 90 ° angle of attack, the yawing moment characteristics and the flowfield about

the rectangular ogive were strongly influenced by Reynolds number effects and rotation

rate. At low Reynolds numbers (RED<200,000) the rectangular ogive was typically

propelling in yaw, with substantial static offset values occurring as ReD approached

200,000. The offsets were reduced as Reynolds number was further increased, and
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transition from propelling to damped yaw occurred at increasing rotation rates until yaw

was fully damped for Reynolds numbers above 500,000 (Figure 21a). The effect of

Reynolds number on the rectangular ogive flowfield at static conditions is shown in

Figure 22.

For very low Reynolds numbers (ReD < 100,000), the flow was separated over the

entire configuration. Large static yaw offsets occurred on the rectangular ogive at slightly

higher Reynolds numbers due to asymmetric flow attachment on the aftbody, as the flow

was completely detached from the forebody at these Reynolds numbers. This flow

separation is illustrated in Figure 22a for a Reynolds number of 178,000. The flow was

completely detached from the forebody, with reattachment occurring along the left-hand

side of the aftbody, resulting in a positive yaw offset (Figure 21 a). This offset was greatly

reduced as Reynolds number increased, due to symmetric flow attachment along both

sides of the body. Figure 22b shows that the flow began to attach along the lower comers

of the forebody as Reynolds number increased to 401,000. As Reynolds number further

increased, the flow attachment lines continued to move forward on the forebody until the

flow was fully attached at the very front of the ogive nose, as shown in Figure 22c for a

Reynolds number of 2,237,000.

As the angle of attack increased to 90 ° at static conditions, the three-dimensional

cross-flow around the forebody configuration diminished and became more analagous to

two-dimensional cylinder type flow. 13 The forebody flow attachment was highly

dependent on Reynolds number, because the local Reynolds number varied with the

diameter of the ogive nose. Therefore, as ReD increased, the local Reynolds numbers on

the nose increased as well. Figure 22 showed the forward progression of flow attachment

on the forebody as a result of increasing the Reynolds number. By evaluating the pressure

data obtained at various cross-sections along the forebody under static conditions, it was
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determined that a minimum local sectional Reynolds number (based on local diameter) of

at least 200,000 was necessary in order to enable flow attachment on the forebody. Figure

23 illustrates the effect of Reynolds number on local flow attachment about the forebody

at a distance of 0.67x/D from the nose tip (forebody station 3). The cross-sectional

pressure distribution for a Reynolds number (RED) of 401,000 at this forebody station is

shown in Figure 23a. Note the development of low pressure regions at the lower comers,

an indication of flow attachment on the forebody. The local Reynolds number at this

cross-section was approximately 220,000. The pressure distribution at the same body

station is shown in Figure 23b for a lower ReD of 178,000. The constant pressure around

the sides and top of the body are indicative of the laminar separation that occurs at such

low Reynolds numbers. Head-on views of the forebody flowfield for the same ReD of

Figure 23 are shown in Figure 24 for reference.

As noted above, the rectangular ogive at 90 ° was propelling in yaw for Reynolds

numbers below 200,000. Surface pressure data measured at rotation, shown in Figure 25,

indicated that the flow around the aftbody contributed heavily to the overall yawing

moment characteristics measured for a Reynolds number of 178,000. At high rates of

rotation the flow became attached on the windward comers of the forebody and the

aftbody, as shown in Figure 25a for -0.4 f_b/2V. The reduction in surface pressure at the

windward comers, due to the attaching flow, resulted in propelling yawing moments. The

local velocity vector was reduced with decreasing rotation rates, resulting in decreased

suction on the forebody until the flow was completely separated from the forebody at

rotation rates of _+0.1 flb/2V. As the rotation rate decreased to zero, a region of strong

suction developed along the left-hand side of the aftbody while the forebody flow

remained separated, generating positive yawing moments. At low rotation rates, the

flowfield around the configuration seemed to be independent of the direction of rotation,

as shown in Figures 25b and 25c for rotation rates of -0.05 and +0.05 flb/2V,
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respectively. This corresponds with the moment data of Figure 21a, where the yawing

moments were fairly constant between rotation rates of -0.1 f_b/2V and +0.1 _b/2V. As

£_b/2V increased, the flow effects on the aftbody were reduced while the flow became

attached along the lower windward comer of the forebody, due to an increase in the local

velocity vector (Figure 25a). This suction on the forebody was responsible for the

propelling yawing moments measured at low Reynolds numbers.

A transitional region was observed between Reynolds numbers of 200,000 and

500,000, where transition from propelling to damped yaw occurred with increasing

rotation rate. This transition is characterized by a discontinuity in the slopes of the yawing

moment curves. The propelling moments observed at these Reynolds numbers were a

result of a region of attached flow along the windward comer of the forebody nose, as

shown in Figures 26a and 27a for Rer,=209,000 (-0.2 f_b/2V) and Rer,---401,O00 (-0.4

_b/2V), respectively. These figures show the pressure field just before transition to

damped yaw had taken place. For a Reynolds number of 209,000, the rectangular ogive

was propelling between rotation rates of about 0.4 and 0.2 _b/2V, but as Reynolds

number increased to 401,000 yaw was only propelling at very high rotation rates (Figure

21 a). As Reynolds number increased, transition occurred at higher rates of rotation until

yaw was fully damped for ReD above 500,000. Damping moments were generated when

the cross-flow over the forebody was separated and reattached along the leeward side of

the aftbody, as shown in Figures 27c and 27d for Ret_=401,000 and -0.3 t2b/2V. A full

view of the configuration is included in Figures 2To and 27d to more clearly illustrate the

influence of the aftbody at transitional Reynolds numbers. Correlation between the

yawing moments and forebody pressures suggested that transition occurred similarly for

Reo=209,000 at a lower rotation rate of -0.15 t2b/2V, although no surface pressures were

obtained on the aft end due to the problems encountered at the Bedford facility. However,

the front view of the forebody pressures for RED=209,000, shown in Figure 26b,
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illustrates a similar pattern of flow separation over the forebody when yaw transitioned

from propelling to damped. As rotation rate decreased the flow was less likely to remain

attached at the nose tip due to a reduction in the local velocity.

As Reynolds number increased beyond 500,000 and out of the transitional range,

the flow became fully attached on the forebody with damped yawing moments resulting.

Figure 21 a shows that yaw was similarly damped for post-transitional Reynolds numbers.

Correspondingly, the flowfield was relatively independent of Reynolds number once the

flow was no longer transitional. For example, Figure 28 illustrates the similarities in the

rotational flowfield at Reynolds numbers of 1,142,000 and 2,237,000 for an f_b/2V value

of -0.2. Note the more prominent suction lobe along the leeward comer of the forebody,

contributing to the damped moment. Additionally, the strong flow attachment along the

leeward side of the aftbody increased the magnitude of the yawing moment.

Although yaw was clearly propelling at low Reynolds numbers before gradually

transitioning to fully damped at higher Reynolds numbers, visualization of the surface

pressures indicated that the flow around the aftbody greatly influenced the overall yaw

characteristics measured on the rectangular ogive. The flow was separated over the

forebody for low Reynolds numbers and low rotation rates. As rotation rate increased, the

flow became attached along the windward side of the forebody due to the increased local

velocity. The propelling moments were generated by flow reattachment on the aftbody at

low rotation or attached flow along the windward comer of the forebody at higher rates of

rotation. As Reo increased, strong suction on the leeward side of the aflbody produced

significant damping moments.

Since the aftbody flowfield so heavily influenced the total yawing moment results

for the rectangular ogive, an effort was made to quantify the yawing moments generated

by the aft end in order to isolate the characteristics of the forebody alone. This was done
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by comparing the rectangular ogive and the rectangular hemisphere data, since the

aftbodies were identical and the overall yaw characteristics were similar. As was the case

with the rectangular ogive, the rectangular hemisphere was propelling in yaw at low

Reynolds numbers before transitioning to fully damped in yaw at high Reynolds numbers

(Figure 29a). Visualization of the pressures showed that the difference in forebody

geometry for the two configurations had little effect on the downstream flow

characteristics. The effect of forebody geometry on the aftbody flowfield for the two

rectangular cross-section bodies is shown in Figure 30 at low Reynolds number, and in

Figure 31 for a Reynolds number of approximately two million. Note the similarity in the

location and relative strengths of the suction lobes on the aftbodies at both flow

conditions. This indicated that the differences in forebody geometry had little effect on

the flow downstream. Therefore, the influence of the aftbody on the yawing moment

characteristics should be equivalent for both configurations. Since the forebody and

aftbody are identical on the rectangular hemisphere, it can be assumed that half of the

total yawing moment obtained at each rotation rate for this shape were generated by the

flow about the aftbody.

At moderate to high values of ReD, the rectangular ogive yawing moments

appeared to have been strongly influenced by the flowfield about the aftbody. Therefore,

in order to isolate the effects of the ogive forebody for a given Reynolds number, one half

of the magnitude of the yawing moments obtained for the hemisphere were subtracted

from the rectangular ogive yawing moments at an equivalent Reynolds number. The

result was an estimate of the yawing moment characteristics of the rectangular ogive due

to the forebody alone (Figure 32). The results in Figure 32 indicate that the level of yaw

damping on a rectangular ogive forebody at 90 ° angle of attack may be somewhat reduced

from what was shown in Figure 21a.
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Circular Ogive - 90 ° Angle of Attack

The rotational side-force and yawing-moment characteristics at several Reynolds

numbers are presented in Figure 33 for the circular ogive at 90 ° angle of attack. Note that

yawing moments were damped for all Reynolds numbers. Supporting pressure

distribution plots are presented in Figures 34 through 37.

The circular ogive was damped in yaw for all Reynolds numbers (Figure 33a),

with large static offsets occurring in the transitional Reynolds number region. Note that

the offsets were reduced for both low and high Reynolds numbers. However, an increase

in the offset occurred at the highest Reynolds number tested (RED=2,080,000), indicating

that fully turbulent flow conditions had not yet been attained.

As with the rectangular ogive at 90 ° angle of attack, the flow about the circular

ogive forebody at static conditions was two-dimensional and highly dependent on the

local Reynolds number. Figure 34 illustrates the forward progression of flow attachment

on the forebody as Reynolds number increased from 350,000 to over two million.

Asymmetric flow attachment was evident over the aft portion of the body at transitional

Reynolds numbers, as shown in Figure 34a for RED=350,000, the lowest Reynolds

number for which pressures were obtained for this configuration. The flow was detached

over much of the forebody, with strong suction developing on the left-hand side of the

aftbody. This suction on the aftbody, in combination with the long moment arm,

generated a substantial static offset in yaw (Figure 33a). As Reynolds number increased,

the flow began attaching farther forward on the forebody until the flow was finally

attached at the tip of the ogive nose. For a Reynolds number of 690,000, the flow was

attached just aft of the nose tip and was symmetric along both sides of the body (Figure

34b). For ReD= 1,380,000 (Figure 34c), the flow had become attached at the very front of

the ogive nose and remained relatively symmetric along both sides of the body. As
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Reynolds number increased to two million the flow became asymmetric again as the

vortex pair began to migrate beak towards the forebody surface (Figure 34d). The right-

hand vortex appeared to generate greater suction along that side of the forebody. This

vortex asymmetry could explain the static yaw offset seen in Figure 33a for

Reo=2,080,000. The moment and pressure data for the circular ogive at both 60 ° and 90 °

angles of attack indicated that there were still some remaining instabilities in the flow as

Reynolds number increased from one to two million. Thus, additional testing at higher

.Reynolds numbers may be necessary in order to obtain data at fully turbulent flow

conditions. Higher Reynolds number testing may help determine if this flow asymmetry

exists at fully turbulent conditions as well, or if it is merely an effect of transition.

The yaw damping on the circular ogive at 90 ° angle of attack was a result of a

reorientation of the pressure field about the forebody with rotation. The positive pressure

(stagnation) region became skewed around towards the windward side of the forebody as

rotation was induced, resulting in an opposing moment at the nose. This effect is more

clearly illustrated by viewing the pressures cross-sectionally. Figure 35 illustrates the

static and rotational effects on the pressure field about the circular ogive at forebody

station 2 (x/D=0.333) for RED=350,000. Under static conditions the positive pressure

region was centered along the bottom of the forebody (Figure 35a). The effect of a

rotation rate of 0.2 flb/2V on the same cross-section is shown in Figure 35b for counter-

clockwise rotation and in Figure 35c for clockwise rotation. Although the flow was fully

separated at these conditions, damping moments were generated by the reorientation of

the positive pressure region about the forebody with rotation. Note that the pressure field

on the forebody was pulled in the direction of rotation. For example, the stagnation point

rotated counter-clockwise on the forebody when the model was rotated in the counter-

clockwise direction (Figure 35b). Similarly for clockwise rotation, the stagnation point

was pulled clockwise about the forebody (Figure 35c).

25



Therotationalflow effectson theforebodyareshownin Figure36 for increasing

Reynoldsnumberat a rotation rateof -0.2 _b/2V. The effectswere noticeableat low

Reynoldsnumberin theorientationof thepositivepressureregionaroundthe bottomof

the forebody(Figure36a).As Reynoldsnumberincreased,therotationaleffectsbecame

moreevident in the reorientationof the low pressurelobeson the forebody. This is

illustratedin Figures36band36castheright-handsuctionlobewassituatedloweron the

forebodythantheleft-handsuctionlobe.Thevortexasymmetryobservedfor a Reynolds

numberof two million becameexaggeratedwith rotation as the left-handvortex was

pulled over towardstheright-handsideof theforebody(Figure36d).For completeness,

the entire flowfield is shownin Figure37 for the sameReynoldsnumbersandrotation

rate of Figure 36. Asymmetricflow attachmenton the aftbodycontributedto the large

yawing momentsthat occurredat a Reynoldsnumberof 350,000 (Figure 37a). As

Reynoldsnumberincreasedto 690,000the aftbodyflow becamemoreevenlyattached

alongbothsides,thusreducingthemagnitudeof theyawingmoments(Figure37b).Also

note the reorientationof the aftbodypressurefield that occurredwith rotation.This is

mosteasilyseenwhentherotationalflowfields in Figure37arecomparedwith the static

flowfieldsshownin Figure34.As thebodyrotatedin thecounter-clockwisedirection,the

positivepressureregionon theaftbodymigratedtowardstheright-handsideof thebody,

which isequivalentto thewindwardsideof theaftbody

The reorientationof thepressurealongthebottomof thecircularogivegenerated

dampingmomentsat 90° angleof attackfor all Reynoldsnumbers.This wasparticularly

true at low Reynoldsnumberswheretheflow wasfully detached,andthepressureswere

constantovermostof thebody.In contrast,yawwaspropellingfor therectangularogive

at 90° angle of attack at low Reynoldsnumbers.The flow was separatedon the
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rectangularogiveat low Reynoldsnumbers as well, but the positive pressure region along

the bottom was constrained by the corners of the rectangular cross-section.

Effect of Flow Modifiers

Interest in the modification of the forebody flowfield at high angles of attack has

ranged from the manipulation of the surface pressure distribution to permit the replication

of high Reynolds number characteristics at low Reynolds number test conditions (e.g.

Reference 14), to the outright modification of the flowfield to improve the basic airplane

behavior and control characteristics (e.g., Reference 15). Because of these concerns, a

limited attempt was made during the course of these tests to evaluate the influence of

Reynolds number and rotation on a typical trip strip and a strake installation on the

circular ogive configuration.

Effect of Trip Strips

The installation of flow tripping strips along the lower portion of the body was

configured based on DRA experience with similar applications, as shown in Figure 4a.

The flow tripping surfaces consisted of the raised edges of small holes punched in a thin

metal strip with the dimensions shown. The effect of these devices on the circular

forebody's yaw and sideforce characteristics at various Reynolds numbers is shown in

Figure 38.

The typical purpose of adding devices such as these to a configuration's forebody

is to attempt to stimulate the development of fully turbulent flow conditions at Reynolds

numbers below where this flow condition would naturally occur. This technique has been

used with some success in other static testing, but as seen in the force and moment data of

Figure 38, the application of these devices can be problematic. When applied to this

particular configuration, the yaw characteristics were significantly changed from the clean
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forebody data, at both low and high Reynolds numbers. With the strips applied, very large

asymmetries in yaw developed for all Reynolds numbers tested and the rotational

characteristics varied widely with Reynolds number, ranging from highly asymmetric

between positive and negative rotation rates, to invariant with rotation. While very

carefully applied, some asymmetry in the attachment of the strips was apparently

responsible for the pervasive offsets that exceeded the highest values observed with the

clean forebody. The pressure data, as shown for various Reynolds numbers at static

conditions in Figure 39, revealed the distortion on the forebody flowfield imposed by the

addition of the strips. For the ReD tested, the strips did provide a relatively invariant

forebody surface pressure distribution. However, all cases exhibit the increased suction

on the right hand side of the body Corresponding to the positive yaw offsets seen in the

moment data. This region of enhanced attached flow on the right side of the body also

produced a more pronounced vortex suction peak on that side of the upper body. The

effect of rotation rate is depicted in Figure 40 at a ReD of 2.1 x 10 6 and shows how the

surface pressure distribution was only slightly influenced by increasing rate. This

observation further illustrates the difficulty of applying flow tripping devices to a

configuration for any conditions other than static, zero sideslip conditions. As shown in

the data of Figure 40, by not moving the strip location as a function of the movement of

the local velocity vector, the flowfield was more or less fixed in a static alignment and

was unable to match the natural re-orientation of the surface pressure distribution. As a

result, the moment data was essentially unchanged with increasing rate (see Figure 38 at a

ReD of 2.1 x 106). While not tested in this particular test, it is likely that a similar

situation would have arisen for non-zero sideslip conditions as well.
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Effect of Forebody Strakes

Several recent high angle of attack aircraft have utilized the application of

forebody strakes to improve their high angle of attack characteristics (e.g., the X-29 and

the X-31, as described in References 16 and 2). In both cases the primary function of the

strakes was to reduce the incidence of asymmetric yaw offsets that frequently occur on

these types of forebodies. Other low Reynolds number test work has shown that when

properly located, nose strakes can also have a beneficial influence on the rotational yaw

damping.m7 For these reasons, test data was taken for the strake configuration shown in

Figure 4b, with the strake mounted at a 45 ° angle above the maximum half breadth of the

local cross section.

The effect of the addition of this strake on the circular forebody's side force and

yawing moment characteristics at various Reynolds numbers is shown in Figure 41. As

shown in this figure, the addition of the strake had a pronounced effect on the yaw

damping characteristics, substantially increasing the damping for all rotation rates tested,

as well as generally reducing the asymmetric yawing moments at static conditions. While

there was a static moment displacement between the lower and the highest ReD curves,

the damping slopes remained very consistent throughout the range of ReD tested. As was

the case for the rectangular ogive, the geometric features presented by the strakes resulted

in a consistent surface pressure distribution for all tested Reo as well. At static conditions

(e.g. Figure 42) the presence of the strake disrupted the formation of attached flow along

the fuselage sides that is characteristic of circular ogive bodies until aft of the strake.

Strong vorticity shed from the strake edges resulted in upper surface suction whose peak

values decreased slightly with increasing ReD. For all ReD, the downstream attached flow

regions were less pronounced than that seen on the clean forebody (e.g., Figure 43

comparing the clean forebody pressures with the strake configuration at a Reo of 2.1 x

106).
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The effect of rotation on the surface pressure distribution revealed the source of

the Reynolds number independent yaw damping observed in the moment data. As seen in

Figure 44, which shows the effect of rotation on the strake configuration at a ReD of

2.1 x 10 6, increasing rotation rate skewed the lower surface transition point associated

with the development of attached flow towards the windward strake and away from the

leeward strake. This resulted in a further reduction of attached flow under the windward

strake (and an increase in surface pressure), along with the development of limited

attached flow under the leeward strake (a decrease in the surface pressure). This pressure

differential between the forebody sides resulted in damped yawing moments with

rotation. This reorientation of the surface pressures was essentially the same for all ReD

tested, as shown in Figures 45 and 46, which portrays the effect of rotation rates of -. 1

and -.2 f2b/2V at selected Reo.

These test results revealed that the beneficial effects observed in earlier low

Reynolds number testing for this particular strake configuration are relatively invariant

with Reynolds number, and thus may have potential as a device to limit or avoid adverse

propelling yaw characteristics. The strake test results also reiterated those observed with

the rectangular ogive configuration, wherein geometric features that fix vortex

development yield configurations that are relatively insensitive to the test Reynolds

number.

30



CONCLUSIONS

Rotary balance experiments were conducted on rectangular and circular ogive

forebodies at 60 and 90 degrees angle of attack over a wide range of Reynolds numbers to

'determine the effects of nose geometry, angle of attack, and rotation on the aerodynamic

characteristics of fuselage-type forebodies. These tests successfully measured, for the first

time, the surface pressure distribution of these configurations under dynamic conditions

in a pressurized tunnel. The results of the tests were to provide an initial exploration of

the effects of velocity vector roll rates and Reynolds numbers on simple geometries, as

well as to provide a database for the development of high angle of attack computational

methods. Analysis of a limited portion of this substantial database has led to the

following conclusions.

The characteristics observed on the circular ogive at 60 ° angle of attack reflected

those observed in previous studies of the same configuration. The pressure data clearly

showed the influence of different boundary layer separation conditions on the forebody

flowfield and how the onset of rotation rate further affected the separation characteristics.

Although the surface pressure data showed significant structural differences in the

flow field between low and high Reynolds numbers, the yaw damping characteristics at

low rotation rates were similar for both fully laminar and fully turbulent flow conditions.

As would be expected, rotational yaw damping varied considerably for test data measured

throughout a broad transitional Reynolds number region. The range of transitional

Reynolds numbers was influenced by local sectional Reynolds numbers that remained

transitional on the forward end of the body, well after the flow over the remainder of the

body had become fully turbulent.

At 90 ° angle of attack, the effects of Reynolds number on the flowfield were very

distinct. The flow was completely detached for both the rectangular and circular ogive
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configurations at laminar flow conditions. As Reynolds number increased, flow

attachment occurred on the forebodies where the local Reynolds number was at least

200,000.

As rotation was induced on the configurations at 90 ° angle of attack, significant

geometric and Reynolds number sensitivities were revealed in the flowfields and yawing

moment characteristics. For the rectangular ogive configuration at laminar separation

conditions, the acceleration of the flow on the upwind comer induced flow attachment

and propelling moments. The flow was attached on all comers of the forebody at fully

turbulent conditions, with suction on the downwind comer increasing with rotation and

resulting in damped yawing moments. Non-linear transition occurred between the low

Reynolds number, propelling yaw characteristics and the damped yaw at fully turbulent

conditions. The flow characteristics in this transitional range varied widely between the

two extremes, depending on the local Reynolds number and rotation rate.

The circular ogive did not have the "sharp" configurational features such as the

comers on the rectangular ogive. Consequently, as rotation was imposed at low Reynolds

numbers, the predominant change in the flowfield was the realignment of the stagnation

point with the velocity vector. This reorientation of the flow was sufficient to produce

damped yawing moments with rotation. As with the rectangular ogive, the moment

characteristics at transitional Reynolds numbers varied considerably as the local flow on

the circular ogive was influenced by rotation rate and local Reynolds numbers.

Due to the high rotation rates required to test at high Reynolds numbers and the

high structural loads imposed on the model and test rig, rotary balance testing is much

more practical and cost-efficient when conducted at low Reynolds numbers. One of the

objectives of these tests was to identify the capabilities and limitations of using low
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Reynolds number data to emulate high Reynolds number characteristics. For the limited

database examined herein it appears that with some restrictions, the data obtained at

laminar separation conditions can be used to predict the turbulent Reynolds number

characteristics. Obviously, continuation of these efforts would be highly beneficial, and

would include an examination of other angles of attack and forebody geometries (i.e.

elliptical and chined forebodies), as well as the influence of other flow modifiers and

strake effects. The development of tools to isolate the forebody forces and moments

(surface pressure integration or direct forebody force and moment measurements) would

also be helpful in further isolating the effect of configuration changes on forebody

characteristics.
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Figure 2. Photograph of rectangular ogive forebody mounted on rotary rig in DRA 13-ft x 9 ft wind tunnel.
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Figure 6. Color mapping of pressure data onto rectangular ogive model with surface shading.

Figure 7. Color mapping of pressure data onto rectangular ogive with surface shading turned off.
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a) ReD = 89,000

b) ReD = 350,000

Figure 16. Pressure distribution for the circular ogive at 60 ° angle of attack for f_b/2V=0.0.
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Figure 17. Highlighted pressure distribution for the circular ogive at 60 ° angle of attack at ReD = 89,000.
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a) _b/2V=0.0

b) _b/2V=-0.2

Figure 18. Effect of rotation on the pressure distribution for the circular ogive at 60 ° angle of attack and
Reo = 350,000.
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a) Rev = 40 _,000

b) ReD = 1"78,000

Figure 23. Local pressure distribution at forebody station 0.67x/D and _2b/2Xr--0.0.
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a) ReD = 401,000

b) ReD = 178,000

Figure 24. Frontal view of pressure distribution for the rectangular ogive at 90 ° angle of attack and t2b/2V=0.0.

F-27





L

v _ UP ,r-I r,- _1 CO _ _ _ CD
_ _ _ N L',,,, _ ',"'f t,,rl

I I I I I i I

0

H

>

H

>

,;L

o
o

L"-'--

H

©

_b

¢...)
;:>

©

©

©

o
©

+ ._

>
-..,..,,

U

F-28





-3

-Z

-Z

-i

-1

-B

-8

8

8

1

a) f_b/2V=-0.2

b) f2b/2V=-0.1

Figure 26. Transition effects on the pressure distribution for the rectangular ogive at 90 ° angle of attack

and ReD = 209,000.
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a) ReD -"1,142,000

b) ReD = 2,237,000

Figure 28. Pressure distribution for the rectangular ogive at 90° angle of attack and f_b/2V=-0.2.
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Figure 29. Effect of rotation rate and Reynolds number on aerodynamic characteristics for rectangular
hemisphere at 90 ° angle of attack
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Figure 29. Effect of rotation rate and Reynolds number on aerodynamic characteristics for rectangular
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a) Rectangular Hemisphere; ReD = 350,000

b) Rectangular Ogive; ReD -- 350,000

Figure 30. Comparison of the pressure distribution for rectangular cross-section aftbodies at low Reynolds

numbers and f_b/2V=-0.1.
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a) Rectangular Hemisphere; ReD = 2,030,000
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b) Rectangular Ogive; ReD = 2,237,000

Figure 31. Comparison of the pressure distribution for rectangular cross-section aftbodies at high Reynolds

numbers and £)b/2V=-0.1.
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Figure 33. Effect of rotation rate and Reynolds number on aerodynamic characteristics for circular

ogive at 90 ° angle of attack
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Figure 38. Effect of trip strips on rotational aerodynamic characteristics at selected Reynolds numbers

for the circular ogive at 60 ° angle of attack
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Figure 38. Effect of trip strips on rotational aerodynamic characteristics at selected Reynolds numbers
for the circular ogive at 60 ° angle of attack
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Figure 41. Effect of forebody strakes on rotational aerodynamic characteristics at selected Reynolds numbers
for the circular ogive at 60 ° angle of attack
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Figure 41. Effect of forebody strakes on rotational aerodynamic characteristics at selected Reynolds numbers
for the circular ogive at 60 ° angle of attack
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Figure 43. Comparison of forebody strakes on and off on forebody pressure distribution for the circular ogive

at 60 ° angle of attack at ReD = 2,100,000.
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